


aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding

Papelões Hidráulicos e Isolantes Térmicos

Catálogo 001-08 BR

SELEÇÃO IMPRÓPRIA, FALHA OU USO IMPRÓPRIO DOS PRODUTOS E/OU SISTEMAS DESCRITOS NESTE CATÁLOGO OU NOS ITENS RELACIONADOS PODEM CAUSAR MORTE, DANOS PESSOAIS E/OU DANOS MATERIAIS.

Este documento e outras informações contidas neste catálogo da Parker Hannifin Ind. e Com. Ltda. e seus Distribuidores Autorizados, fornecem opções de produtos e/ou sistemas para aplicações por usuários que tenham habilidade técnica. É importante que você analise os aspectos de sua aplicação, incluindo conseqüências de qualquer falha, e revise as informações que dizem respeito ao produto ou sistemas no catálogo geral da Parker Hannifin Ind. e Com. Ltda. Devido à variedade de condições de operações e aplicações para estes produtos e sistemas, o usuário, através de sua própria análise e teste, é o único responsável para fazer a seleção final dos produtos e sistemas e também para assegurar que todo o desempenho, segurança da aplicação e cuidados sejam atingidos.

Os produtos aqui descritos com suas características, especificações e desempenhos são objetos de mudança pela Parker Hannifin Ind. e Com. Ltda., a qualquer hora, sem prévia notificação.

Papelões Hidráulicos (Isentos de Amianto)

Fibra de Aramida e NBR

Temperatura Máxima Temperatura de Trabalho Temperatura Mínima	380 °C 200 °C -120 °C
Pressão Máxima Pressão de Trabalho	100 bar 40 bar
Cor	Preferencialmente verde
Referência Cruzada	Teadit NA1000 Klinger C-4401
Espessuras	1/64", 1/32", 1/16", 3/32", 1/8" (com tela metálica, exceto 1/64")
Dimensões da Folha	1500 mm X 2000 mm
Dimensões da Folha Aplicações	Indicado para aplicações gerais com temperaturas e pressões moderadas. Bom desempenho em óleos, água, gases, soluções salinas, combustíveis, álcoois, lubrificantes e solventes.

Fibra de Aramida e NBR

Temperatura Máxima Temperatura de Trabalho Temperatura Mínima	400 °C 240 °C -200 °C
Pressão Máxima Pressão de Trabalho	110 bar 50 bar
Cor	Preferencialmente verde
Referência Cruzada	Teadit NA1002 Klinger C-4400
Espessuras	1/64", 1/32", 1/16", 3/32", 1/8" (com tela metálica, exceto 1/64")
Dimensões da Folha	1500 mm X 2000 mm
Aplicações	Junta universal de alta pressão adequada para utilização em muitos segmentos da indústria química, alimentícia e indústria de fornecimento de água. Resistente à óleos, água, vapor, gases, soluções salinas, combustíveis, álcoois, ácidos orgânicos e inorgânicos, hidrocarbonetos, lubrificantes e refrigerantes.
Código Parker	PHP002AN

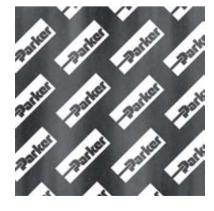
Papelões Hidráulicos (Isentos de Amianto)

Fibra de Celulose e NBR

Temperatura Máxima Temperatura de Trabalho Temperatura Mínima	210 °C 200 °C -80 °C
Pressão Máxima Pressão de Trabalho	50 bar 20 bar
Cor	Preferencialmente vermelho
Referência Cruzada	Teadit NA1040 Klinger C-4243
Espessuras	1/64", 1/32", 1/16", 3/32", 1/8" (com tela metálica, exceto 1/64")
Dimensões da Folha	1500 mm X 2000 mm
Aplicações	Material de vedação para aplicações não severas. Adequado para líquidos e gases com baixas pressões e temperaturas. Boa resistência química à água e óleos.
Código Parker	PHP003CN

Fibra de Aramida e NBR/SBR

Temperatura Máxima Temperatura de Trabalho Temperatura Mínima	380 °C 270 °C -200 °C
Pressão Máxima Pressão de Trabalho	70 bar 50 bar
Cor	Preferencialmente branca
Referência Cruzada	Teadit NA1060 Klinger C-6307
Espessuras	1/64", 1/32", 1/16", 3/32", 1/8"
Dimensões da Folha	1500 mm X 2000 mm
Aplicações	Ótimo desempenho para alta pressão, muito utilizado na indústria automotiva. Material autovedante através de seu inchamento controlado em contato com óleo. Boa resistência à água e óleos.
Código Parker	PHP004NS


Papelões Hidráulicos (Isentos de Amianto)

Fibra de Aramida/Grafite e NBR

Temperatura Máxima Temperatura de Trabalho Temperatura Mínima	400 °C 270 °C -200 °C
Pressão Máxima Pressão de Trabalho	130 bar 70 bar
Cor	Preferencialmente preta
Referência Cruzada	Teadit NA1092 Klinger Top-graph2000
Espessuras	1/64", 1/32", 1/16", 3/32", 1/8"
Dimensões da Folha	1500 mm X 2000 mm
Aplicações	Devido a sua alta resistência à carga compressiva, este material é ideal para utilização em vapor e outras aplicações especiais. Material de vedação em grafite flexível com alto grau de estabilidade, oferecendo confiabilidade em seu manuseio.
Código Parker	PHP005GN

Fibra de Carbono e NBR

Temperatura Máxima Temperatura de Trabalho Temperatura Mínima	450 °C 270 °C -200 °C
Pressão Máxima Pressão de Trabalho	130 bar 70 bar
Cor	Preferencialmente preta
Referência Cruzada	Teadit NA1100 Klinger C-4500
Espessuras	1/64", 1/32", 1/16", 3/32", 1/8" (com tela metálica exceto 1/64")
Dimensões da Folha	1500 mm X 2000 mm
Aplicações	Material com desempenho superior, projetado para ser utilizado na indústria química. Adequado para uso em agentes alcalinos com elevadas pressões e temperaturas. Também utilizado em aplicações de vapor superaquecido.
Código Parker	PHP006CA

Recomendado	•	N D	Z O	AN	Ą	Ą.	SN
Depende das Condições de Trabalho		002	003	005	901	900	9
Não Recomendado	A	PHP005GN	PHP003CN	PHP002AN	PHP001AN	PHP006CA	PHP004NS
Acetaldeído (aldeído acético)	CH ₃ CHO	-	•	-	•	•	•
Acetamida	CH ₃ CONH ₂	•	•	•	•	•	•
Acetato de alumínio	(CH ₃ COO) ₂ AIOH	•	•	•	•	•	•
Acetato de amila	CH ₃ COOC ₅ H ₁₁						
Acetato de butila	CH ₃ COOC ₄ H ₈					•	
Acetato de chumbo	(CH ₃ COO) ₂ PB	•	•	•	•	•	•
Acetato de cobre	(CH ₃ COO) ₂ Cu	•	•	•	•	•	•
Acetato de etila	CH ₃ COOC ₂ H ₅						
Acetato de potássio	CH ₃ COOK	•	•	•	•	•	•
Acetato de vinila	CH ₃ COOC ₂ H ₃	•	•	•	•	•	•
Acetileno	C_2H_2	•	•	•	•	•	•
Acetona	CH ₃ COCH ₃					•	
Ácido acético 10% (vinagre)	CH ₃ COOH	•	•	•	•	•	•
Ácido acético 100% (glacial)	CH ₃ COOH	•	•	•	•	•	•
Ácido adípico	HOOC(CH ₂) ₄ COOH	•	•	•	•	•	•
Ácido benzóico	C _e H ₅ COOH		•			•	
Ácido bórico	B(OH) ₃	•	•	•	•	•	•
Ácido butírico	C ₃ H ₇ COOH	•	•	•	•	•	•
Ácido carbólico 100% (fenol)	C ₆ H ₅ OH	A	A	A	A	A	A
Ácido cítrico	(CH ₂ COOH) ₂ C(OH)COOH	•	•	•	•	•	•
Ácido clorídrico 20%	HCI		•			•	A
Ácido clorídrico 37%	HCI	A	A	A	A		A
Ácido crômico	H ₂ CrO ₄		•				A
Ácido esteárico	C ₁₇ H ₃₅ COOH	•	•	•	•	•	•
Ácido fluorídrico 10%	HF	A	A	A	A	•	A
Ácido fluorídrico 40%	HF	A	A	A	A	A	A
Ácido fluorsilícico	H_2 SiF $_5$	•	•	•	•	•	•
Ácido fórmico 10%	HCOOH	•	•	•	•	•	•
Ácido fórmico 85%	HCOOH		•			•	
Ácido fosfórico (todas as concentrações)	H_3PO_4	•	•	•	•	•	•
Ácido ftálico	C ₆ H ₄ (COOH) ₂	•	•	•	•	•	•
Ácido lático 50%	CH ₃ CHOHCOOH	•	•	•	•	•	•
Ácido málico	HOOC-CHOH-CH ₂ -COOH	•	•	•	•	•	•
Ácido nítrico 20%	HNO ₃	A	A	A	A		A
Ácido nítrico 40%	HNO ₃	A	A	A	A	A	A
Ácido nítrico 96%	HNO ₃	A	A	A	A	A	A

^{*} A resistência química dos materiais metálicos fica restrita à resistência química da tela metálica de aço carbono

Recomendado	•	N S	S	AN	AN	∀	SN
Depende das Condições de Trabalho	•	005	903	002	90	900	9
Não Recomendado		PHP005GN	PHP003CN	PHP002AN	PHP001AN	PHP006CA	PHP004NS
Ácido oléico	C ₁₇ H ₃₃ COOH	•	•	•	•	•	•
Ácido oxálico	(COOH) ₂					•	A
Ácido palmítico	C ₁₅ H ₃₁ COOH	•	•	•	•	•	•
Ácido salicílico	C ₆ H ₄ (OH)COOH	•	•	•	•	•	•
Ácido sulfúrico (até 10%)	H ₂ SO ₄		•			•	A
Ácido sulfúrico 20%	H ₂ SO ₄	A	A	A	A		A
Ácido sulfúrico 50%	H ₂ SO ₄	A	A	A	A		A
Ácido sulfúrico 96%	H ₂ SO ₄	A	A	A	A		A
Ácido sulfuroso	H ₂ SO ₃		•			•	
Ácido tânico	C ₇₆ H ₅₂ O ₄₆	•	•	•	•	•	•
Ácido tartárico	(CHOHCOOH) ₂	•	•	•	•	•	•
Açúcar		•	•	•	•	•	•
Água	H ₂ O	•	•	•	•	•	•
Água clorada (0,5%)	2	•	•	•	•	•	•
Água de alimentação de caldeira (alcalina)		•	•	•		•	
Água de cal	Ca(OH) ₂	•	•	•	•	•	•
Água do mar		•	•	•	•	•	•
Alcatrão		•	•	•	•	•	•
Álcool (consultar nome específico)							
Álcool butílico	C ₄ H ₉ OH	•	•	•	•	•	•
Álcool etílico	C_2H_5OH	•	•	•	•	•	•
Álcool isopropílico	(CH ₃) ₂ CHOH	•	•	•	•	•	•
Álcool metílico (metanol)	CH ₃ OH	•	•	•	•	•	•
Alúmen	KAI(SO ₄) ₂	•	•	•	•	•	•
Aluminato de sódio	Na ₃ AlO ₃	•	•	•	•	•	•
Alvejante	3 3	•	•	•	•	•	•
Amido	(C ₆ H ₁₀ O ₅)n	•	•	•	•	•	•
Amônia	NH ₃	•	•	•	•	•	•
Anilina	C ₆ H ₅ NH ₂	A	A	A	A	A	
Anon (ciclo hexanona)	C ₆ H ₁₀ O	A	A	A	A	A	
Ar	0 10	•	•	•	•	•	•
Arcton 12	CCl ₂ F ₂	•	•	•	•	•	
Arcton 22	CHF,CI	•	•	•	A	•	A
Arsenato de chumbo	Pb ₃ (AsO ₄) ₂	•	•	•	•	•	•
Asfalto	3, 4/2	•	•	•	•	•	
Banho de tintura (alcalino, neutro, ácido)		•	•	•	•	•	•
, , , , , , , , , , , , , , , , , , , ,							

^{*} A resistência química dos materiais metálicos fica restrita à resistência química da tela metálica de aço carbono

Recomendado	•	Z	Z	3	Z	Κ	S
Depende das Condições de Trabalho		020	930	0024	017	900	<u>4</u>
Não Recomendado	A	PHP005GN	PHP003CN	PHP002AN	PHP001AN	PHP006CA	PHP004NS
Benzeno	C_6H_6	•	•	•	•	•	
Bicarbonato de sódio	NaHCO ₃	•	•	•	•	•	•
Bissulfito de sódio	NaHSO ₃	•	•	•	•	•	•
Bórax	Na ₂ B ₄ O _{7 10} H ₂ O	•	•	•	•	•	•
Butano	C ₄ H ₁₀	•	•	•	•	•	
Butanol (álcool butílico)	C_4H_9OH	•	•	•	•	•	•
Butanona (M.E.K.)	CH ₃ COC ₂ H ₅		•				
Butilamina	$C_4H_9NH_2$	A	A	A	A	A	A
Carbonato de amônio	(NH ₄) ₂ CO ₃	•	•	•	•	•	•
Carbonato de potássio	K ₂ CO ₃	•	•	•	•	•	•
Cianeto de potássio	KCN	•	•	•	•	•	•
Cianeto de sódio	NaCN	•	•	•	•	•	•
Ciclo hexanol	C ₆ H ₁₁ OH	•	•	•	•	•	•
Ciclo hexanona (consultar anon)	3						
Clofen T64		•	•	•			A
Clorato de alumínio	Al(ClO ₃) ₃	•	•	•	•	•	•
Clorato de potássio	KCIO ₃	•	•	•	•	•	•
Cloreto de alumínio	AICI ₃	•	•	•	•	•	•
Cloreto de amônio	NH ₄ Cl	•	•	•	•	•	•
Cloreto de bário	BaCl ₂	•	•	•	•	•	•
Cloreto de cálcio	CaCl ₂	•	•	•	•	•	•
Cloreto de etila	C₂H₅Cl						A
Cloreto de etileno	(CH ₂ Cl) ₂	A	A	A	A	A	A
Cloreto de hidrogênio (seco)	HCI	•	•	•	•	•	•
Cloreto de metila (clorometano)	CH ₃ Cl						A
Cloreto de metileno (diclorometano)	$\mathrm{CH_2CL_2}$	A	A	A	A	A	A
Cloreto de potássio	KCI	•	•	•	•	•	•
Cloreto de sódio	NaCl	•	•	•	•	•	•
Cloro seco	Cl ₂	•	•	•	•	•	
Cloro úmido	Cl_2						A
Clorofórmio	CHCl ₃						A
Condensado (água)	H ₂ O	•	•	•	•	•	•
Cresol (creolina)	C ₆ H ₄ (OH)CH ₃					A	
Decalina	$C_{10}H_{18}$	•	•	•	•	•	•
Dibenzílico	(C ₆ H ₅ CH ₂) ₂ O	A	A	A	A	A	A

^{*} A resistência química dos materiais metálicos fica restrita à resistência química da tela metálica de aço carbono

Recomendado		N U	N O	AN	Ā	Ş	SN.
Depende das Condições de Trabalho		002	003	005	90	900	9
Não Recomendado		PHP005GN	PHP003CN	PHP002AN	PHP001AN	PHP006CA	PHP004NS
Dibutilftalato	C ₆ H ₄ (COOC ₄ H ₉) ₂	•	•	•	•	•	•
Dicromato de potássio	K ₂ Cr ₂ O ₇	•	•	•	•	•	•
Dimetilformamida	HCON(CH ₃) ₂	A	A	A	A	A	A
Dióxido de carbono	CO ₂	•	•	•	•	•	•
Dióxido de enxofre	SO ₂				-		
Dissulfeto de carbono	CS ₂	•	•	•	•	•	
Etano	C_2H_6	•	•	•	•	•	
Etanoato de etila	CH ₃ COOC ₂ H ₅						
Etanol (álcool etílico)	C₂H₅OH	•	•	•	•	•	•
Éter de petróleo		•	•	•	•	•	
Éter dietílico	$C_2H_5OC_2H_5$	•	•	•	•	•	•
Etileno	C_2H_4	•	•	•	•	•	•
Etileno glicol	(CH ₂ OH) ₂	•	•	•	•	•	•
Etilenodiamina	(CH ₂ NH ₂) ₂	A	A	A	A	A	
Fenol	C ₆ H₅OH	A	A	A	A	A	A
Formaldeido (formol)	HCHO	•	•	•	•	•	•
Formamida	HCONH ₂						
Fosfato de diamônio (DAP)	(NH ₄) ₂ HPO ₄	•	•	•	•	•	•
Freon 12	CCl ₂ F ₂	•		•		•	
Freon 22	CHF ₂ CI	•		•	A	•	A
Gás de alto-forno		•	•	•	•	•	•
Gás de cozinha		•	•	•	•	•	•
Gás de iluminação		•	•	•	•	•	•
Gás natural		•	•	•	•	•	
Gasolina		•	•	•	•	•	
Glicerina (glicerol)	(CH ₂ OH) ₂ CHOH	•	•	•	•	•	•
Heptano	C7H ₁₆	•	•	•	•	•	
Hidrato de hidrazina	(NH ₂) ₂ H ₂ O	•	•	•	•	•	•
Hidrocarbonetos alifáticos (consultar nome específico)							
Hidrocarbonetos aromáticos (consultar nome específico)							
Hidrogênio	H_2	•	•	•	•	•	•
Hidróxido de amônio	NH ₄ OH	•	•	•	•	•	•
Hidróxido de cálcio	Ca(OH) ₂	•	•	•	•	•	•
Hidróxido de potássio	KOH					•	
Hidróxido de sódio	NaOH					•	

^{*} A resistência química dos materiais metálicos fica restrita à resistência química da tela metálica de aço carbono

Recomendado	• • • • • • • • • • • • • • • • • • •	ND	N O	NA	AN	Q A	SNI
Depende das Condições de Trabalho	-	005	003	PHP002AN	9	8	9
Não Recomendado		PHP005GN	PHP003CN	품	PHP001AN	PHP006CA	PHP004NS
Hipoclorito de cálcio	Ca(OCI) ₂	•	•	•	•	•	•
Hipoclorito de potássio	KOCI	•	•	•	•	•	•
lodeto de potássio	KJ	•	•	•	•	•	•
Iso-octano (2, 2, 4 - trimetilpentano)	(CH ₃) ₃ CCH ₂ CH(CH ₃) ₂	•	•	•	•	•	
M.E.K. (2-butanona)	CH ₃ COC ₂ H ₅						
Metano	CH ₄	•	•	•	•	•	•
Monoclorometano	CH ₃ Cl						A
Nafta		•	•	•	•	•	A
Nitrato de potássio	KNO ₃	•	•	•	•	•	•
Nitrobenzeno	$C_6H_5NO_2$	A	A	A	A	A	
Nitrogênio	N ₂	•	•	•	•	•	•
Octano	C ₈ H ₁₈	•	•	•	•	•	
Óleo combustível		•	•	•	•	•	
Óleo de aquecimento		•	•	•	•	•	
Óleo de colza		•	•	•	•	•	•
Óleo de linhaça		•	•	•	•	•	•
Óleo de mamona		•	•	•	•	•	•
Óleo de silicone		•	•	•	•	•	•
Óleo diesel		•	•	•	•	•	
Óleo hidráulico (à base de éster, fosfato)							
Óleo hidráulico (à base de glicol)		•	•	•	•	•	•
Óleo hidráulico (mineral)		•	•	•	•	•	
Óleo lubrificante (consultar óleos minerais)							
Óleo mineral - ASTM nº1		•	•	•	•	•	•
Óleo mineral - ASTM n°3		•	•	•	•	•	•
Óleo para transformadores		•	•	•	•	•	•
Óleo térmico (diphyl / dowtherm)		•					
Óleum (ácido sulfúrico fumegante)	H ₂ SO ₄ com SO ₃ livre	A	A	A	A	A	A
Oxigênio	O ₂	•	•	•	•	•	•
Parafina (Querosene)		•	•	•	•	•	A
Pentano	$C_{5}H_{12}$	•	•	•	•	•	
Percloroetileno	C_2Cl_4				•		
Permanganato de potássio	KMnO ₄	•	•	•	•	•	•
Peróxido de hidrogênio (até 6% em peso)	H ₂ O ₂	•	•	•	•	•	•
Petróleo	<u> </u>	•	•	•	•	•	A
Piridina	$C_{5}H_{5}N$	A	A	A	A	A	

^{*} A resistência química dos materiais metálicos fica restrita à resistência química da tela metálica de aço carbono

Recomendado		•	Z	Z	Z	Z _A	Ą	SZ
Depende das Condiç	ões de Trabalho		902	80	002	07	900	<u>8</u>
Não Recomendado		A	PHP005GN	PHP003CN	PHP002AN	PHP001AN	PHP006CA	PHP004NS
Propano		C ₃ H ₈	•	•	•	•	•	-
Querosene			•	•	•	•	•	A
R134a		CH ₂ FCF ₃	•		•	-	•	A
Sabão			•	•	•	•	•	•
Sal		NaCl	•	•	•	•	•	•
Salmoura (cloreto de s	sódio)	NaCl	•	•	•	•	•	•
Silicato de sódio (vidro	solúvel)	Na,SiO,K,SiO,	•	•	•	•	•	•
Skydrol 500			A	A	A	A	A	
Soda (carbonato de so	ódio)	Na ₂ CO ₃	•	•	•	•	•	•
Spirit (álcool etílico)			•	•	•	•	•	•
Sulfato crômico de po	tássio	KCr(SO ₄) _{2 12} H ₂ O	•	•	•	•	•	•
Sulfato de cálcio		CaSO ₄	•	•	•	•	•	•
Sulfato de cobre		CuSO ₄	•	•	•	•	•	•
Sulfato de magnésio		MgSO ₄	•	•	•	•	•	•
Sulfato de sódio		Na ₂ SO ₄	•	•	•	•	•	•
Sulfeto de sódio		Na2S	•	•	•	•	•	•
Terebentina			•	•	•	•	•	A
Tetracloreto de carbor	10	CCI ₄						
Tetracloroetano		C ₂ H ₂ Cl ₄						-
Tetralina (1, 2, 3, 4 - te	etrahidronaftaleno)	C ₁₀ H ₁₂	•	•	•	•	•	•
Tolueno		C ₆ H ₅ CH ₃	•	•	•	•	•	A
Tricloroetileno		C ₂ HCl ₃						A
Trietanolamina		N(CH ₂ CH ₂ OH) ₃	•	•	•	•	•	•
Uréia		(NH ₂) ₂ CO	•	•	•	•	•	•
Vapor (diagrama pT)		H ₂ O	•				•	
Xileno (xilol)		$C_6H_4(CH_3)_2$	•	•	•	•	•	
P H P	x x x	x x	2	x x	X		X	_
Perfil	Sequencial	Carga		Espessu			Tela	
0	001	AN = Fibra de Aramida e NBR		1/64"		T = Com		
O	002	AN = Fibra de Aramida e NBR				Em bran	co = Sei	m tela
MO FAZE PEDIDO	003	CN = Fibra de Celulose e NBR		1/16"	- 1			
COMO FAZER O PEDIDO	004	NS = Fibra de Aramida e NBR/SBR		3/32"				
00	005	GN = Fibra de Aramida / Grafite e NBR		1/8"				
	006	CA = Fibra de Carbono e NBR						

Exemplos

PHP002AN132T = Papelão Hidráulico Parker de Fibra de Aramida e NBR com Tela Metálica e Espessura de 1/32" PHP005GN18 = Papelão Hidráulico Parker de Fibra de Aramida/Grafite e NBR e Espessura de 1/8"

PTFE Puro

Acabamento Aplicação	Impregnação de PTFE ao próprio filamento, sem lubrificante. É recomendada para hastes de válvulas e
	outras vedações estáticas ou de baixa rotação.
Recomendação	São adequadas para vedação de produtos alimentícios, químicos, farmacêuticos e outros que não podem ser contaminados.
Temperatura Máxima Temperatura Mínima	280°C -200°C
Concentração	pH 0 a 14
Velocidade Superficial	5,0 m/s (1000fpm)
Pressão	30 bar máx
Referência Cruzada	Teadit 2005
Bitolas Disponíveis	1/8", 3/16", 1/4", 5/16", 3/8", 7/16", 1/2", 9/16", 5/8", 3/4", 7/8" e 1".
Código Parker	GMP001PP

PTFE com Grafite

Acabamento	Este filamento tem
Acadamento	impregnação de PTFE,
	carga de grafite incorporada
	e lubrificante. Óleo de
	silicone.
Aplicação	Hastes de válvulas,
	misturadores, agitadores,
	bombas especiais de
	alimentação de caldeiras
	com as seguintes vantagens: baixíssimo coeficiente
	de atrito, alto poder de
	lubrificação, alta resistência
	química, alta dissipação de
	calor, não enrijece e elimina
	o desgaste do eixo.
Recomendação	São adequadas para
	produtos químicos em
	geral, líquidos muito corrosivos ou com alta
	viscosidade, água de
	alimentação de caldeiras
	com elevadas pressões e
	derivados de petróleo.
Temperatura Máxima	280°C
Temperatura Mínima	-200°C
Concentração	pH 0 a 14 Atmosfera
	Oxidante
Velocidade Superficial	25,0 m/s (4000fpm)
Pressão	35 bar máx
Referência Cruzada	Teadit 2007G
Bitolas Disponíveis	1/8", 3/16", 1/4", 5/16",
	3/8", 7/16", 1/2", 9/16",
	5/8", 3/4", 7/8" e 1".
Código Parker	GMP002PG

Fios de Aramida com PTFE e Grafite

Acabamento	Este tipo de gaxeta é fabricado com fios cardados de aramida e lubrificada com óleo mineral, PTFE e acabamento externo de grafite.
Aplicação	Bombas de escória, captação de água de rios e estações de tratamento de água.
Recomendação	São adequados para vedação dos produtos acima nos segmentos de açúcar, álcool, papel, celulose e siderúrgico.
Temperatura Máxima Temperatura Mínima	280°C -200°C
Concentração	pH 2 a 12
Velocidade Superficial	15,0m/s (3000fpm)
Pressão	20 bar máx.
Referência Cruzada	Teadit 2043
Bitolas Disponíveis	1/8", 3/16", 1/4", 5/16", 3/8", 7/16", 1/2", 9/16", 5/8", 3/4", 7/8" e 1".
Código Parker	GMP003AG

Fios de Carbono e Grafite

Acabamento	Fabricada com fios de carbono impregnada com dispersão de PTFE tornando-o uma gaxeta com alta qualidade e resistência química.
Aplicação	Recomendada para sopradores de fuligem, alimentadores e aplicações abrasivas.
Recomendação	São adequados para vedação dos produtos acima nos segmentos de açúcar, álcool, papel, celulose e siderúrgico.
Temperatura Máxima	650°C vapor 450°C atm oxid.
Concentração	pH 0 a 14
Velocidade Superficial	20m/s
Pressão	para bombas 25 bar máx para válvulas 300bar máx.
Referência Cruzada	Teadit 2202
Bitolas Disponíveis	1/8", 3/16", 1/4", 5/16", 3/8", 7/16", 1/2", 9/16", 5/8", 3/4", 7/8" e 1".
Código Parker	GMP004CG

Fios de Aramida com PTFE

Acabamento	Fabricada com fios cardados de aramida e impregnada com dispersão de PTFE e lubrificada com óleo inerte, ideal para vedações sem contaminação do grafite.
Aplicação	Bombas, válvulas, agitadores, misturadores, etc.
Recomendação	Segmento de produtos alimentícios, farmacêuticos, químicos, papel e celulose.
Temperatura Máxima Temperatura Mínima	280°C -100°C
Concentração	pH 2 a 12
Velocidade Superficial	velocidade sup. 15m/s
Pressão	20 bar máx.
Referência Cruzada	Teadit 2044
Bitolas Disponíveis	1/8", 3/16", 1/4", 5/16", 3/8", 7/16", 1/2", 9/16", 5/8", 3/4", 7/8" e 1".
Código Parker	GMP005AP

Fibra Fenólica com PTFE

Acabamento Aplicação	Esta gaxeta é fabricada com filamento de fibra fenólica, impregnada com PTFE. Bombas, válvulas, agitadores, misturadores, etc.
Recomendação	Recomendada para utilização em bombas, válvulas e outros equipamentos no segmento de papel e celulose, entre outros, em processo envolvendo água, vapor, solventes, produtos com sólidos em suspensão e químicos em geral. Possui alta flexibilidade, excelente desempenho com fluidos abrasivos e baixo coeficiente de atrito.
Temperatura Máxima Temperatura Mínima	250°C -100°C
Concentração	pH 1 a 13
Velocidade Superficial	15m/s
Pressão	25 bar máx.
Referência Cruzada	Teadit 2777
Bitolas Disponíveis	1/8", 3/16", 1/4", 5/16", 3/8", 7/16", 1/2", 9/16", 5/8", 3/4", 7/8" e 1".
Código Parker	GMP006FP

PTFE Expandido com Grafite e Aramida

Acabamento	PTFE grafitado com
	cantos reforçados em aramida
Aplicação	Hastes de válvulas, misturadores, agitadores, bombas especiais de alimentação de caldeiras com as seguintes vantagens: baixíssimo coeficiente de atrito, alto poder de lubrificação, alta resistência química, alta dissipação de calor, não enrijece e elimina o desgaste do eixo.
Recomendação	São adequadas para produtos químicos em geral, líquidos muito corrosivos ou com alta viscosidade, água de alimentação de caldeiras com elevadas pressões e derivados de petróleo.
Temperatura Máxima Temperatura Mínima	280°C -200°C
Concentração	pH 2 a 12
Velocidade Superficial	25,0 m/s (4000fpm)
Pressão	bar 35 máx
Referência Cruzada	Teadit 2017
Bitolas Disponíveis	1/8", 3/16", 1/4", 5/16", 3/8", 7/16", 1/2", 9/16", 5/8", 3/4", 7/8" e 1".
Código Parker	GMP007PA

PTFE Puro e Lubrificado

Acabamento	Impregnação de PTFE e lubrificante de óleo inerte que reduz seu coeficiente de atrito.
Aplicação	São recomendadas para vedações em bombas, hastes de válvulas, reatores, agitadores e misturadores.
Recomendação	São adequadas para vedar produtos químicos fortes, corrosivos, serviços severos em geral e produtos alimentícios.
Temperatura Máxima Temperatura Mínima	280°C -100°C
Concentração	pH 0 a 14
Velocidade Superficial	12,0 m/s (2000fpm)
Pressão	30 bar máx
Referência Cruzada	Teadit 2006
Bitolas Disponíveis	1/8", 3/16", 1/4", 5/16", 3/8", 1/2", 5/8", 3/4", 7/8" e 1".
Código Parker	GMP009PL

Fibra de Vidro			
Descrição	Estas gaxetas são produzidas com fios de Fibra de Vidro sobre miolo de mechas de Fibra de Vidro.		
Aplicação	São recomendadas para isolamento de calor em portas de estufas, fornos, caldeiras, recobrimento de tubulações, juntas de dilatação.		
Temperatura	Com solicitação mecânica = 260°C Sem solicitação mecânica = 550°C		
Referência Cruzada	Teadit Termovid 636		
Bitolas Disponíveis	1/8", 3/16", 1/4", 5/16", 3/8", 7/16", 1/2", 9/16", 5/8", 3/4", 7/8" e 1".		
Código Parker	GMP008FV		

	G M P	X X X	x x	X X X
	Perfil	Sequencial	Carga	Bitola
		001	PP = PTFE Puro	1/8"
		002	PG = PTFE com Grafite	3/16"
1 20		003	AG = Aramida com PTFE e Grafite	1/4"
PEDIDO		004	CG = Fios de Carbono e Grafite	5/16"
		005	AP = Fios de Aramida com PTFE	3/8"
RO		006	FP = Fibra Fenólica com PTFE	7/16"
FAZER		007	PA = PTFE Expandido com Grafite e Aramida	1/2"
EB C		800	FV = Fibra de Vidro	9/16"
СОМО		009	PL = PTFE Puro Lubrificado	5/8"
00				3/4"
				7/8"
				1"

Exemplos:

GMP001PP316 = Gaxeta em Metro Parker de PTFE Puro com Bitola de 3/16" **GMP005AP1** = Gaxeta em Metro Parker de Fios de Aramida com PTFE com Bitola de 1"

Tecidos (Isentos de Amianto)

Tecido de Kevlar (Aramida)

Descrição/Aplicação

Tecido com construção tipo tela, confeccionado a partir de fibra aramida com outras fibras sintéticas, conferindo ao tecido excelentes propriedades mecânicas, como alta resistência ao corte e à abrasão. Recebe um tratamento especial antichama que faz com que o tecido apresente "Índice de Inflamabilidade Zero", conforme homologado pelo Instituto de Pesquisas Tecnológicas (IPT) de São Paulo. É utilizado em equipamentos de proteção coletiva como cortinas, cabanas de solda, entre outros, proteção contra respingos de solda e de metais fundidos em geral.

Referência Cruzada **Temperatura**

Teadit Aramtex AR 443ACE Uso Contínuo 280°C Uso Controlado 450°C

Código Parker

TECP001AR

Tecido de Fibra Cerâmica

Descrição/Aplicação

Fabricados com fios de fibra cerâmica com padronagem tipo tela. Substituem os tecidos de amianto na maioria das aplicações, entre as quais destacamos: isolamento térmico de equipamentos e tubulações; colchões isolantes; mantas para resfriamento controlado no tratamento térmico da solda de metais; cortinas de proteção de instrumentos para trabalho em áreas de altas temperaturas: revestimento térmico de mangueiras e cabos elétricos; juntas de expansão; forração de painéis navais, dentre outros. Possuem excelente resistência ao choque térmico e à maioria dos produtos químicos, exceto os ácidos fluorídricos e fosfóricos e álcalis concentrados

Referência Cruzada

Temperatura

Teadit Termoceram® 1200 Com solicitação mecânica 550°C Sem solicitação

mecânica 1260°C

Código Parker

TECP002FC

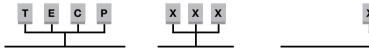
Tecidos (Isentos de Amianto)

Tecido de Fibra de Vidro

Descrição/Aplicação

São confeccionados a partir de fios de fibra de vidro. Têm padronagem tipo tela raso turco. Totalmente inorgânicos, de fácil aplicação e grande durabilidade, grande capacidade de isolamento térmico, não contêm amianto, apresentam baixo peso por metro quadrado e baixo custo. São indicados para a maioria das aplicações dos tecidos de amianto, sendo que destacamos: isolamento térmico de equipamentos e tubulações, colchões isolantes, mantas para esfriamento controlado no tratamento térmico da solda de metais, cortinas de proteção de instrumentos para trabalhos em áreas de altas temperaturas, revestimento térmico de mangueiras e cabos elétricos, juntas de expansão, forração de painéis navais e de tubulações frigoríficas, assim como de ar condicionado.

Referência Cruzada


Teadit Termovid® 910N

Temperatura

Com solicitação mecânica 260°C Sem solicitação mecânica 550°C

Código Parker

TECP003FV

	Perfil	Sequencial	Tipo	Espessura
0		001	AR = Aramida	1,5 mm
ZER 00		002	FC = Fibra de Cerâmica	1,7 mm
FAZ		003	FV = Fibra de Vidro	2,0 mm
				2,2 mm
				3,0 mm
00				3,2 mm

Exemplos:

TECP001AR17 = Tecido Parker de Aramida com Espessura de 1,7 mm TECP003FV3 = Tecido Parker de Fibra de Vidro com Espessura de 3,0 mm

Parker Hannifin

A Parker Hannifin

A Parker é a líder global na fabricação de componentes destinados aos mercados de movimento e controle do movimento, dedicada a oferecer excelência no serviço ao cliente, de modo que os resultados sejam alcancados com o trabalho em conjunto.

Reconhecida em todo o mundo por seu alto padrão de qualidade, a Parker disponibiliza suas tecnologias para facilitar o trabalho de quem está nos setores agrícola, móbil, industrial e aeroespacial, sendo o único fabricante a oferecer aos seus clientes uma ampla gama de soluções pneumáticas, hidráulicas e eletromecânicas.

No Mundo

Atuando em 43 países, a Parker conta com mais de 57.000 colaboradores diretos e possui a maior rede de distribuição autorizada nesse campo de negócio, com mais de 8.400 distribuidores, atendendo mais de 417.000 clientes em todo o mundo.

No Brasil

A Parker projeta, fabrica e comercializa produtos para o controle do movimento, fluxo e pressão.

Presente nos segmentos industrial, móbil e aeroespacial, a Parker atua com as linhas de automação pneumática e eletromecânica; refrigeração industrial, comercial e automotiva; tubos, mangueiras e conexões; instrumentação; hidráulica; filtração e vedações.

No segmento aeroespacial, a Parker supre seus clientes com a mais completa linha de componentes e sistemas hidráulicos e pneumáticos.

Além disso, a Parker conta com 1.550 colaboradores diretos e mais de 300 distribuidores autorizados, oferecendo completa integração das linhas de produtos, material de apoio e treinamento, qualidade e rapidez no atendimento e assistência técnica em todo o país.

Tecnologias de Movimento e Controle

Aerospace

Líder em desenvolvimento, projeto, montagem de sistemas e componentes de apoio para a maioria das aeronaves em uso atualmente, atuando no setor aeronáutico, militar, aviação geral e executiva, sistemas de armas terrestres, mísseis e veículos lançadores.

Hydraulics

Líder mundial em melhoria de desempenho de maquinários, com uma linha completa de componentes e sistemas hidráulicos para máquinas e equipamentos dos setores industrial, aeroespacial, agrícola, construção civil, mineração, transporte e energia.

Climate Control

Componentes e sistemas para controle de fluidos para refrigeração que proporcionam conforto e praticidade aos mercados agrícola, de refrigeração, alimentos, bebidas e laticínios, resfriamento de precisão, saúde, processamento, supermercados e transportes.

Pneumatics

Líder no fornecimento de sistemas e componentes pneumáticos, de alta tecnologia, que aumentam a precisão e produtividade dos clientes nos setores agrícola, industrial, construção, mineração, óleo e gás, transporte, energia, siderurgia, papel e celulose.

Electromechanical

Líder no fornecimento de sistemas e componentes eletromecânicos, de alta tecnologia, que aumentam a precisão e produtividade dos clientes nos setores da saúde, automobilístico, automação industrial, máquinas em geral, eletrônica, têxteis, fios e cabos.

Process Control

Líder global em projeto, manufatura e distribuição de componentes vitais aos setores químico/refinarias, petroquímico, usinas de álcool e biodiesel, alimentos, saúde, energia, óleo e gás.

Filtration

Sistemas e produtos de filtração e separação que provêm maior valor agregado, qualidade e suporte técnico aos clientes dos mercados industrial, marítimo, de transporte, alimentos e bebidas, farmacêutico, óleo e gás, petroquímica e geração de energia.

Sealing & Shielding

Vedações industriais e comerciais que melhoram o desempenho de equipamentos nos mercados aeroespacial, agrícola, militar, automotivo, químico, produtos de consumo, óleo e gás, fluid power, industrial, tecnologia da informação, saúde e telecomunicações.

Fluid & Gas Handling

Conectores rígidos e flexíveis para direcionar o fluxo de fluidos críticos, atendendo aos mercados agrícola, industrial, naval, transportes, mineração, construção civil, florestal, siderurgia, refrigeração, combustíveis, óleo e gás.

Divisões do Grupo Parker Seal

América do Norte

Chomerics (CHO)

Woburn, MA - EUA

Composite Sealing Sytems (CSS)

San Diego, CA - EUA

Engineered Polymer Systems (EPS)

- Salt Lake City, UT EUA
- Elgin, IL EUA
- Marion, NY EUA
- Nacogdoches, TX EUA

Engineered Seals (ESD)

Syracuse, IN - EUA

Integrated Sealing Systems (ISSD) (Antiga Powertrain)

Lynchburg, VA - EUA

O-Ring (ORD)

Lexington, KY - EUA

Tech Seal (TSD)

Spartanburg, SC - EUA

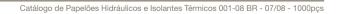
Europa

Chomerics

Marlow, Buckinghamshire Reino Unido

Packing

Bietigheim-Bissingen Alemanha


O-Ring

Pleidelsheim - Alemanha

América Latina

Seals

São Paulo, SP - Brasil

Divisão Seals Via Anhanguera, Km 25,5 05276-977 - São Paulo - SP, Brasil fone 11 3915 8500 fax 11 3915 8516 www.parker.com

Parker Hannifin Ind. e Com. Ltda.